Discussion of French, Gandhi, and Gilbert (2025)

"Quantifying the Welfare Effects of Gentrification on Incumbent Low-Income Renters"

Discussant: Heejin Yoon (University of Wisconsin-Madison)

19th UEA North American Meeting

October 4, 2025

Summary of Paper I

 Research Question: How does gentrification affect the welfare of incumbent low-income renters?

- Data:

- > 1 million low-income renter households (2000–2019)
- Linked administrative data: MAF-ARF, LEHD, ACS, CoreLogic
- 50 large metro areas; tract-level neighborhood definition

Empirical Approach:

- Reduced-form: out-migration, earnings, and neighborhood change outcomes
- Structural: dynamic model of neighborhood/workplace choice w/ forward-looking agents

- Identification:

- Shift-share IVs based on skill-specific labor demand shocks
- Spatial proximity to high-college-share tracts interacted with metro-level Bartik shocks

Summary of Paper II

- Key Findings

- Moving costs are *moderate* (e.g., \$3,578 for Black renters; \$1,692 for non-Black).
- Black renters place stronger value on neighborhood amenities (10pp college share \rightarrow \$1,224/year).
- Welfare: With modest moving costs, initial neighborhood location plays a limited role in long-run welfare of low-income renters in gentrifying tracts

Contributions

- Structural quantification of gentrification's welfare effects driven by rent vs. amenity changes
- Amenity gains offset rent increases, contrary to the common assumption that low-income incumbents are worse off from gentrification

- **Primary Goal**: Calculate ΔW for low-income renters who were incumbents in gentrifying neighborhoods, and compare it with those in non-gentrifying areas.
- Approach:

$$\Delta W pprox W \left(\left\{ \underbrace{\mathsf{Amenity}_t}_{\mathit{proxied by College Share}}, \; \mathsf{Rent}_t \right\}_{t=2000}^{2019} - W \left(\mathsf{Amenity}_{2000}, \; \mathsf{Rent}_{2000} \right) \right)$$

- Concerns (i) & (ii): Imperfect Amenity Proxy
 - (i) **Nonlinearity**: A 10pp increase in college share:
 - E.g., $0\% \rightarrow 10\%$ may increase perceived amenity, but $90\% \rightarrow 100\%$ could reduce diversity
 - (ii) Confounding Improvements: Changes in college share results in other improvements
 - E.g., school quality

- **Primary Goal**: Calculate ΔW for low-income renters who were incumbents in gentrifying neighborhoods, and compare it with those in non-gentrifying areas.

- Approach:

$$\Delta W pprox W \left(\left\{ \underbrace{\mathsf{Amenity}_t}_{\mathit{proxied by College Share}}, \; \mathsf{Rent}_t \right\}_{t=2000}^{2019} - W \left(\mathsf{Amenity}_{2000}, \; \mathsf{Rent}_{2000} \right) \right)$$

- Concern (iii): Over-Attributing Rent Changes
 - (iii) The model assumes that all observed rent changes are responses to $\Delta College\ Share$, but rent also rise by other factors
 - E.g., local credit condition unrelated to gentrification

- **Primary Goal**: Calculate ΔW for low-income renters who were incumbents in gentrifying neighborhoods, and compare it with those in non-gentrifying areas.

- Approach:

$$\Delta W pprox W \left(\left\{ \underbrace{\mathsf{Amenity}_t}_{\mathit{proxied by College Share}}, \; \mathsf{Rent}_t \right\}_{t=2000}^{2019} - W \left(\mathsf{Amenity}_{2000}, \; \mathsf{Rent}_{2000} \right) \right)$$

- Concern (iv): Omitted Job Market Channel
 - (iv) Gentrification may alter local job opportunities and wage structures, but job opportunities are assumed to be fixed at 2000 level
 - Rosen-Roback: wages, rents, and amenities adjust jointly in spatial equilibrium
 - Gentrification → job opportunity: Lester & Hartley (2014), Meltzer & Ghorbani (2017), ...

- Summary of Concerns:

- (i) Mis-specification of Observed Amenity = College Share, given nonlinearity
- (ii) Omission of ∆*Unobserved Amenity*
- (iii) Inclusion of $\triangle Rent$ components irrelevant to gentrification
- (iv) Omission of ΔJob Market driven by gentrification
- \Rightarrow Not so sure if the core finding, i.e., $\Delta W \approx 0$ still holds after considering them

- (i) Mis-specification of Observed Amenity = College Share, given nonlinearity
 - Limit the sample to neighborhoods with College Share below 30%, 20%, or 10%
 - Since the analysis already focuses on low-income tracts, most neighborhoods will survice after this additional filter
- (ii) Omission of Δ*Unobserved Amenity* driven by gentrification
- (iii) Inclusion of $\triangle Rent$ components irrelevant to gentrification
- (iv) Omission of $\triangle Job$ Market driven by gentrification

- (i) Mis-specification of *Observed Amenity = College Share*, given nonlinearity
- (ii) Omission of △*Unobserved Amenity* driven by gentrification
 - Show that observed amenity measures in other papers, e.g., the PCA-based amenity in Diamond (2016) or the Quality-of-Life index in Gyourko et al. (2013), are largely explained by College Share
 - E.g.,, if *Amenity Index* = β *College Share* + FE yields $R^2 > 0.8$, that would provide compelling evidence (doesn't even need to be tract-level for this exercise!)
- (iii) Inclusion of $\triangle Rent$ components irrelevant to gentrification
- (iv) Omission of $\triangle Job$ Market driven by gentrification

- (i) Mis-specification of *Observed Amenity = College Share*, given nonlinearity
- (ii) Omission of △*Unobserved Amenity* driven by gentrification
- (iii) Inclusion of $\triangle Rent$ components irrelevant to gentrification
 - Use IV-predicted rent changes in welfare simulations to capture relevant component
 - Imperfect, but a clear improvement over using observed rent
- (iv) Omission of ΔJob Market driven by gentrification

- (i) Mis-specification of Observed Amenity = College Share, given nonlinearity
- (ii) Omission of △*Unobserved Amenity* driven by gentrification
- (iii) Inclusion of $\triangle Rent$ components irrelevant to gentrification
- (iv) Omission of $\triangle Job Market$ driven by gentrification
 - Will be discussed as Point II

- (i) Mis-specification of *Observed Amenity = College Share*, given nonlinearity
- (ii) Omission of Δ*Unobserved Amenity* driven by gentrification
- (iii) Inclusion of $\triangle Rent$ components irrelevant to gentrification
- (iv) Omission of ΔJob Market driven by gentrification
 - Will be discussed as Point II
- ⇒ If the core findings still hold, that would make the results far more compelling.

Point II. Reduced Form: Timing of Gentrification Matters

Point II. Reduced Form: Timing of Gentrification Matters

- Gentrification has null effect on incumbents' earnings or commuting distance \rightarrow justification for "(iv) omission of ΔJob Market driven by gentrification"

- Empirical Framework:

- **X Variable**: $\operatorname{Gent}_{n(i),2010 \to 2019} \equiv \frac{\operatorname{College}_{n(i),2019} \operatorname{College}_{n(i),2010}}{\operatorname{Adult Population}_{n(i),2010}}$
- Y Variable: $\Delta Earning_{i,2010 \rightarrow 2019}$ or $\Delta Commuting\ Distance_{i,2010 \rightarrow 2019}$
- Issue: identical dose for very different paths
 - e.g., (i) gradual increase over 2010–2019, (ii) single big jump in 2010–2011. (iii) single big jump in 2018–2019
- Why this can bias the hazard estimate down:
 - If the gentrification effect persists for several years, the following scenario is possible:

$$\begin{cases} \text{Modest jump in 2010-11} & \rightarrow \text{larger } \Delta y_{i,2010 \rightarrow 2019} \\ \text{Big jump in 2018-19} & \rightarrow \text{smaller } \Delta y_{i,2010 \rightarrow 2019} \end{cases} \quad \rightsquigarrow \widehat{\beta} < 0 \text{ or } \approx 0$$

Point II. Reduced Form: Timing of Gentrification Matters

Suggestion:

- Run regression with time-varying Gent annually

$$\Delta y_{i,t,t+1} = \beta_{NC}^{LP} \cdot \text{Gent}_{n(i),t-1,t} + X_i' \gamma + \cdots, \text{ where }$$

$$\text{Gent}_{n(i),t-1,t} \equiv \frac{\text{College}_{n(i),t} - \text{College}_{n(i),t-1}}{\text{Adult Population}_{n(i),t-1}}$$

 \Rightarrow If $\widehat{\beta}$ is still economically insignificant, "(iv) omission of \triangle Job Market driven by gentrification" can confidently be justified!

Point III. Model Assumptions Driving Lower Moving Cost

Point III. Model Assumptions Driving Lower Moving Cost

- Paper (p.4): "Modest estimated moving costs underlie a core insight of welfare analysis"
 - Moving costs apply **only if** $n_t \neq n_{t-1}$

- Concern:

- Frictionless within-tract downsizing may absorb rent shocks \to lower $\widehat{\mathit{MC}}^k$ with the observed moving rate
- If downsizing within a tract is costly, then the reason for not moving will be attributed more to higher $\widehat{\mathit{MC}}^k$
- The same logic may apply to the frictionless job change assumption

- Suggestion:

- Impose a model assumption $H_{n,t}^k = 1$ for all k, n, t and see if the welfare impact is not significantly affected

Final Thoughts

- Amazing dataset and impressive model structure
 - Rich administrative panel covering location, earnings, and demographics
 - Dynamic model of neighborhood and job choice addressing welfare trade off rent ↑ & amenity ↑ by gentrification
- As a JM candidate this year, I learned a lot about what makes a **successful** JMP.
- Wishing this paper even more success going forward!